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Abstract

The latency location routing problem integrates the facility location problem and
the multi-depot cumulative capacitated vehicle routing problem. This problem in-
volves making simultaneous decisions about depot locations and vehicle routes to
serve customers while aiming to minimize the sum of waiting (arriving) times for all
customers. To address this computationally challenging problem, we propose a re-
inforcement learning guided hybrid evolutionary algorithm following the framework
of the memetic algorithm. The proposed algorithm relies on a diversity-enhanced
multi-parent edge assembly crossover to build promising offspring and a reinforce-
ment learning guided variable neighborhood descent to determine the exploration
order of multiple neighborhoods. Additionally, strategic oscillation is used to achieve
a balanced exploration of both feasible and infeasible solutions. The competitiveness
of the algorithm against state-of-the-art methods is demonstrated by experimental
results on the three sets of 76 popular instances, including 51 improved best solu-
tions (new upper bounds) for the 59 instances with unknown optima and equal best
results for the remaining instances. We also conduct additional experiments to shed
light on the key components of the algorithm.
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1 Introduction

The location routing problem (LRP) plays a critical role in logistics man-
agement. The problem can be viewed as consisting of two sub-problems: the
facility location problem FLP (i.e., selecting which depots to open) and the
multi-depot vehicle routing problem (i.e., minimizing travel distance or other
distance-related costs). The complexity of this problem arises from the need
to consider both sub-problems simultaneously. The latency location routing
problem (LLRP) is a LRP variant where the objective function of the under-
lying routing problem is to minimize the total waiting time of all customers.
This customer-centric problem has many applications in different contexts
related to emergency logistics operations in post-disaster relief, last-mile de-
livery with shared intermediate facilities in urban logistics, and delivery of
perishable products (Ngueveu et al., 2010; Nucamendi-Guillén et al., 2022).

The LLRP can be thought of as a combination of the FLP and the mul-
tiple depot cumulative vehicle routing problem (MDCCVRP). Given that
both constituent problems are NP-hard, the LLRP is inherently a compu-
tationally challenging problem (Moshref-Javadi & Lee, 2016). The problem
can be defined on a directed complete graph G = (V,E) with V = D ∪C and
E = {(i, j) : i, j ∈ V, i ̸= j}, where D is the set of homogeneous uncapacitated
depots (|D| ≥ 1) and C = {C1, C2, ...Cm} is the set of customers. The set of
arcs (directed edges) E is associated with a non-negative matrix Y = (dij),
where dij represents the travel time (or equivalently the distance) of the arc
(i, j) ∈ E and the items of Y satisfy triangle inequality. Furthermore, there is
a fleet H of Nv homogeneous vehicles, each with a capacity P . Each customer
i ∈ C has a demand pi that is fulfilled when a vehicle visits the customer.
A solution to the LLRP problem, after determining the opening of at most
Nd depots, involves at most Nv disjoint Hamiltonian tours from these depots.
Each tour starts and ends at the same opened depot, ensuring that each cus-
tomer is visited exactly once by a tour. In addition, the sum of the demands
of the customers in each tour must not exceed the capacity P of the vehicle of
the tour. Given a feasible solution, let tki be the arrival time of vehicle k ∈ H
at customer i ∈ C (tki = 0 if i is not served by k). Then the LLRP is to find a
solution S that minimizes the sum of the waiting times of all customers.

Minimize f(S) =
∑
k∈H

∑
i∈C

tki , S ∈ Ω (1)

where Ω is the search space of all feasible candidate solutions for a LLRP
instance. A mathematical formulation of the LLRP is provided in (Moshref-
Javadi & Lee, 2016).
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The LLRP was formally defined by Moshref-Javadi & Lee (2016), where two
algorithms were proposed to tackle it, a memetic algorithm (MA) and a recur-
sive granular algorithm (RGA). MA uses a solution representation consisting
of two parts: the first part represents the open depots, and the second part de-
fines the vehicle assignment and the sequence of the customers visited by each
vehicle. Four different initialization methods are applied to diversify the initial
population. The Order Crossover (OX) is used to generate offspring solutions,
and a local search based on three move operators is applied to improve the
generated offspring. In RGA, a granularity-based neighborhood search method
systematically modifies the current solution, followed by a local search proce-
dure using three move operators to further improve the solution. The authors
tested the algorithm on three benchmark sets for the LRP variants, specifying
the number of open depots and assigned vehicles for each instance.

Nucamendi-Guillén et al. (2022) proposed two novel mixed-integer formu-
lations based on multi-level networks for the LLRP. Additionally, they in-
troduced a variant of the LLRP that considers the open cost of depots.
To solve the LLRP, they presented a GRASP-based iterated local search
(GBILS), which includes a constructive procedure and an improvement proce-
dure. Within each iteration of the algorithm, a feasible solution is constructed
by the constructive procedure and subsequently improved by the improvement
procedure. The constructive procedure randomly applies different methods to
determine the opened depots. Following this, customers are selected based
on their distance to the opened depots, and a given number of routes are
constructed. The remaining customers are assigned to routes based on both
distance and remaining vehicle capacity. In the improvement procedure, three
intra-route moves are iteratively applied until the solution can no longer be
improved. Then, two inter-route moves are applied to further improve the so-
lution. Experimental results showed that GBILS was able to find several new
best-known solutions.

Osorio-Mora et al. (2023b) presented three algorithms that integrate simu-
lated annealing (SA) and variable neighborhood descent (VND) (Mladenović
& Hansen, 1997) to effectively solve the LLRP. SA serves as the method
to escape local optima, and the VND procedure is applied to improve the
solution. Upon reaching a threshold indicating that the solution cannot be
further improved, the Lin-Kernighan-Helsgaun (LKH-3) heuristic (Helsgaun,
2017) is used to improve each individual route, addressing the correspond-
ing CCVRP. The study introduced three types of VND methods exhibiting
different behaviors. Experimental results on various instances indicated that
the proposed algorithm significantly outperformed the state-of-art algorithms
from previous studies in the domain.

Osorio-Mora et al. (2023a) introduced an iterated local search (M-ILS) to
tackle three latency vehicle routing problems with multiple depots, including
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the MDCCVRP, the LLRP and the multi-depot k-traveling repairman prob-
lem. Recognizing that the proper selection of depots is critical to the success
of the algorithm, the authors introduced a method that integrates LKH-3
and integer linear programming to simultaneously consider depot selection
and vehicle routing. Following this, an iterative process applies a perturba-
tion procedure, a local search based on five moves, and a SA-VND approach
similar to Osorio-Mora et al. (2023b) to continually improve the quality of
the solution. Then, the LKH-3 algorithm is used again to solve the CCVRP
for each open depot. Experimental results showed that M-ILS stands out as
the most powerful algorithm for solving the LLRP, consistently producing the
best-known solutions for most benchmark instances.

These reviewed studies have continuously advanced the state of the art in
solving the LLRP. However, compared to other popular routing problems,
research on the problem is still limited, and additional efforts are needed to
develop more powerful and robust methods capable of finding satisfactory
solutions for the most challenging problem instances.

In this paper, we present a reinforcement learning guided hybrid evolutionary
algorithm to address the LLRP, which includes a multi-parent edge assembly
crossover and a learning-driven local search. Inspired by the edge assembly
crossover for the traveling salesman problem (Nagata & Kobayashi, 2013), the
proposed crossover builds offspring solutions by inheriting subtours that con-
tribute to high-quality solutions from the parents, preserving the desired solu-
tion diversity with multiple parents, and considering edge orientation during
the crossover process. The VND-based local search is reinforced by two original
techniques. It uses reinforcement learning to dynamically determine the explo-
ration order of the underlying neighborhoods. It additionally adopts strategic
oscillation (Glover & Hao, 2011) to allow the VND procedure to achieve a bal-
anced exploration between both feasible and infeasible search spaces. In terms
of methodological contributions, the idea of the multi-parent edge assembly
crossover can be conveniently applied to other routing problems, while the
dynamic exploration of multiple neighborhoods with reinforcement learning is
valuable for local search algorithms using multiple move operators.

In terms of computational contributions, we present experimental results on
76 popular benchmark instances to evaluate the performance of the algorithm.
The results show that the algorithm is highly competitive with state-of-the-
art algorithms, by finding 51 record-breaking results (new upper bounds) and
matching all the remaining best-known results. These updated results are use-
ful for future studies of the problem. Moreover, these results are achieved with
shorter computation times than state-of-the-art methods, indicating its com-
putational efficiency. We also perform experiments to understand the behav-
ior of the algorithm. Finally, the codes of the algorithm will be made publicly
available, which can be used by practitioners and researchers to solve related
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problems.

In the remainder of the paper, we present the proposed algorithm in Section 2,
a comprehensive computational comparison with leading algorithms in Section
3. Section 4 shows additional experiments to analyze the main algorithmic
components and provide insights into their roles. Section 5 offers conclusions
and outlines future work.

2 Reinforcement learning guided hybrid evolutionary algorithm

The proposed reinforcement learning guided hybrid evolutionary algorithm
(RLHEA) for the LLRP follows the framework of the population-based memetic
algorithms (MAs) (Moscato, 1999), especially MAs in discrete optimization
(Hao, 2012). MAs benefit from the synergy of these two complementary search
strategies and provide a powerful framework for solving difficult problems. In
particular, MAs have been very successful in solving several complex rout-
ing problems (He & Hao, 2023a,b; Lu et al., 2018; Nagata, 1997; Ren et al.,
2023). RLHEA is an advanced MA characterized by its multi-parent edge
assembly crossover (MPEAX) and its reinforcement learning guided variable
neighborhood descent with strategic oscillation (RL-SOVND). It also includes
a population initialization procedure, a mutation procedure, and a population
management method.

2.1 Main scheme

The general RLHEA framework is outlined in Algorithm 1. The learning func-
tions Q and R are initialized at the beginning (line 2). The population Pop
is generated by the initialization procedure (line 3). After recording the best
feasible solution Sb found so far (line 4), the algorithm enters the ”while” loop
to improve the population. In each generation, three parents are randomly se-
lected from the population (line 6). The multi-parent edge assembly crossover
is then employed to generate an offspring solution (line 7). If the offspring is
infeasible (i.e., violating the vehicle capacity or/and the number of opened
depots), it is immediately repaired (line 9), followed by a mutation procedure
to diversify the solution (line 11). Then, RL-SOVND is activated to improve
the quality of the offspring (line 12). The search information is updated based
on the local optimum obtained (lines 13-17), and the population is updated
accordingly (line 18). During the search process, if the best solution Sb remains
unchanged for a given number of consecutive generations, half of the individ-
uals in the population are regenerated to introduce diversity (line 20). The
algorithm terminates and returns the best feasible solution Sb when reaching
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the predefined maximum number of generations (line 23).

Algorithm 1 Pseudo-code of RLHEA
Input: Problem instance, population size τ , population replacement threshold Ir.
Output: The best solution Sb found.
1: In ← 0 /* Counter of consecutive generations the best solution Sb is not im-

proved */
2: Q,R← Initialize the Q-learning functions Q and R
3: Pop = {S1, S2, ..., Sτ} ← PopInitialize() /* Population initiation, section 2.2 */
4: Sb ← arg min∀Si∈Popf(Si) /* Record the best feasible solution found so far */
5: while stopping condition is not reached do
6: SA, SB, SC ←RandomParentSelection(P)
7: S ← MPEAX (SA, SB, SC) /* Crossover, section 2.3 */
8: if Is_Infeasible(S) then
9: S ← Repair(S) /* Repairing infeasibility, section 2.4 */
10: end if
11: S ← Mutation(S) /* Mutation, section 2.5 */
12: Sl, Q,R← RL-SOVND(S,Q,R) /* Local improvement, section 2.6 */
13: if f(Sl) < f(Sb) then
14: Sb ← Sl, In ← 0
15: else
16: In ← In + 1
17: end if
18: UpdatingPop(Pop, Sl) /* Population management, section 2.7 */
19: if In > Ir then
20: ReplacingPop(Pop), In ← 0 /* Population replacement */
21: end if
22: end while
23: return Sb /* Return the best feasible solution found during the search */

2.2 Population initialization

The population initialization is a two-step process: depot selection and route
construction, and applies a random initialization method and a greedy initial-
ization method with an equal probability. The first step randomly selects a
predefined number of depots to open. For the route construction step, note
that the objective value decreases as the number of vehicles increases since
the edge returning from the last customer to the depot doesn’t contribute to
the objective. Additionally, the weight of an edge within a route affects the
waiting time of all customers following that edge. Therefore, it is important
that the edge at the beginning of each route is as short as possible, while
utilizing all available vehicles and maintaining a balanced distribution of cus-
tomers across all routes. Building upon these considerations, the second step
assigns customers to different vehicles in a cyclic manner until all customers
are served. Both greedy and random methods are used to assign customers.
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The greedy method first selects the shortest edge between the opened depots
and the unselected customers to determine the depot and the first node until
the specified number of routes is initialized. Then, each route is constructed
by choosing the shortest edges between the last node of the route and the
remaining unselected customers. The random method constructs the routes
by selecting random depots and random customers, without using any greedy
selection criterion. After a solution is constructed, it is improved using the
RL-SOVND procedure, and then inserted into the population if no copy of
the solution exists in the population.

2.3 Offspring generation based on MPEAX

A meaningful crossover should be able to produce promising offspring by in-
heriting good features from the parents (Hao, 2012). Therefore, it is important
to find good features that contribute to the high-quality of solutions and to
pass them on to the offspring. For the traveling salesman problem and rout-
ing problems, the common edges shared by the parents are regarded as the
key feature of high-quality solutions, and this feature has enabled the design
of powerful crossover operators such as the maximal preservative crossover
(Mühlenbein, 1991), the partition crossover (Whitley et al., 2009; Sanches
et al., 2017) and the edge assembly crossover (EAX) (Nagata, 1997; Nagata &
Kobayashi, 2013). Also, EAX-like operators also performed well on the capac-
itated vehicle routing (Nagata, 2007) and other well-known routing problems
(Nagata et al., 2010; He & Hao, 2023a,b).

For the LLRP, we introduce the multi-parent edge assembly crossover (MPEAX)
that relies on the idea of the original EAX crossover for the TSP (Nagata, 1997;
Nagata & Kobayashi, 2013). MPEAX also generalizes the dEAX crossover of
the two-individual evolutionary algorithm (TIEA) for the MDCCVRP (Zou
et al., 2024).

EAX for the TSP uses the joint graph (undirected graph) of the parent solu-
tions to generate the so-called AB-cycles, where an AB-cycle is a cycle con-
sisting of edges taken alternately from the parents and constitutes one core
element of EAX. For the LLRP, recognizing that the direction of the route
significantly impacts the objective function, we account for the route direction
and use a directed graph to represent a LLRP solution. In this graph, each cus-
tomer node is connected to one in-degree edge and one out-degree edge. Based
on this graph representation of solutions, the proposed MPEAX crossover gen-
eralizes the notion of AB-cycle to the case of directed edges with three parent
solutions. In addition, the presence of multiple depots in the LLRP may make
it impossible to form an AB-cycle due to the absence of edges with the same
degree related to some depots. To overcome this, we treat all depots as a sin-
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gle node in our approach like in (Zou et al., 2024) for the MDCCVRP. This
treatment may not result in a strict ’cycle’. So we adopt the term AB-sequence
to accommodate this modification.

Let SA, SB, and SC be three parent solutions randomly selected in the pop-
ulation. We define their directed graphs, GA = (V,EA), GB = (V,EB) and
GC = (V,EC) where V = D ∪ C and EX (X = A,B,C) is the set of directed
edges traveled by parent solution SX . Suppose that SA, SB, and SC are re-
combined in this order. Then the MPEAX crossover first recombines parents
SA and SB to get an intermediate offspring solution, which is then recombined
with parent SC to get the final offspring. The specific steps of MPEAX are
described as follows and an illustrative example is provided in Fig. 1.

(1) We create a joint graph GAB = (V, (EA ∪ EB) \ (EA ∩ EB)) from GA =
(V,EA) and GB = (V,EB).

(2) The edges in GAB are grouped into AB-sequences. An AB-sequence be-
gins with a randomly selected node that has connected edges. Then, an
adjacent edge is chosen randomly with respect to this node, and edges
from GA and GB with the same degree for their common node are cho-
sen to be alternately linked. When an edge connecting to the depot is
selected, the next chosen edge can be any edge connected to any depot
with the same degree. Once an edge is chosen such that it has the same
degree as the first selected edge at the first chosen node, an AB-sequence
is formed. This process is repeated until no edge exists in GAB.

(3) The E-set is built by randomly selecting an AB-sequence, and then se-
lecting the AB-sequences that share at least one node with the chosen
sequence to form the E-set. Then take parent SA as the base solution,
remove the edges from SA and add the edges from SB included in E-set.
The step leads to an intermediate solution.

(4) It is possible that the intermediate solution contains sub-tours (i.e., cy-
cles consisting exclusively of customer nodes). If this happens, they are
eliminated by the 2-opt* operator by removing two arcs (one from the
sub-tour, one from the existing route) and connecting the sub-tour to
the exiting route by adding two new arcs. It is also possible that some
routes start and end at different depots, making the route not a cycle. To
address this issue, we select the depot that is closer to the first node of
the route as the depot for that route. Once this issue is solved, we obtain
an intermediate offspring solution from parents SA and SB, we use SO to
denote this solution.

(5) The last parent solution SC is then used to be recombined with the in-
termediate offspring solution SO, following the same procedure used to
crossover parents SA and SB. This leads to the final offspring solution.

In the example of Fig. 1, two out of the five depots (square points) are selected
as the opened depots. MPEAX generates four AB-sequences (step 2), and AB-
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AB-sequences Offspring solutionOffspring solution

SASA SB

GAB

1 2

3 4

E-set Intermidate solution

Fig. 1. Illustration of the crossover procedure.

sequence 4 is selected as the central AB-sequence, which shares common nodes
with AB-sequences 1 and 2. Then the E-set consists of three AB-sequences
(step 3). In the intermediate solution, there is a sub-tour (the small tour),
and a tour is not a cycle (involving two depots). After fixing these problems
in step 4, three new arcs are introduced, shown in green, leading to the final
offspring.

2.4 Repair procedure

MPEAX can generate infeasible offspring with more open depots than allowed.
In addition, since MPEAX does not take vehicle capacity into account, the
capacity constraint may be violated. To address these issues, we use a two-step
procedure to repair an infeasible offspring solution. The first step ensures that
the number of open depots doesn’t exceed the allowed limit, while the second
step focuses on repairing capacity violations.

If the number of open depots exceeds the given limit Nd, we use two repair
methods. The first method relies on the frequency information of each de-
pot being selected in the high-quality solutions returned by the local search
procedure (RL-SOVND). Among the open depots, the top Nd depots with
the highest frequency in the offspring being repaired are retained. The second
method randomly selects Nd depots. Once the open depots are determined,
the routes involved in the discarded depots are reassigned using a greedy ap-
proach. Each such route is assigned to an open depot such that it is the closest
depot to the first node of that route.
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To deal with capacity violations, we use the inter-neighborhood operator 2-
opt* to reassign customer nodes. we assess a solution using the modified objec-
tive function F of Section 2.6.3, with the penalty parameter β set sufficiently
large to strongly penalize capacity violations. The procedure terminates when
a feasible solution is reached or when all neighborhood solutions induced by
2-opt* have been explored. Note that this repair procedure doesn’t guarantee
the feasibility of capacity. The purpose of the capacity repair is to bring the
input solution as close to the feasible space as possible. The RL-SOVND pro-
cedure that follows will take care of the infeasibility issue because it examines
both feasible and infeasible solutions.

2.5 Mutation

After the MPEAX procedure, which is designed to preserve shared edges of the
parents that contribute to high quality solutions, there may be a high degree
of similarity between the offspring and the parents. To ensure a diversified
offspring solution, a mutation is applied, with a probability mp, to modify the
offspring with two operators: the depot swap for the depots and the ejection
chain for the customers. The depot swap operator selects a depot randomly
from the set of unopened depots and uses it to replace a randomly selected
open depot. The ejection chain operator randomly selects three customer nodes
from different routes and swaps their positions in a cyclic manner. This mu-
tation operation is performed ml times (ml is called the mutation length).
After the mutation procedure, new edges not present in the parent solutions
are introduced, and different depot configurations are explored.

2.6 Reinforcement learning guided VND with strategic oscillation

Our local search method, which is another critical component in our MA
algorithm, is a reinforcement learning guided variable neighborhood descent
with strategic oscillation (RL-SOVND). RL-SOVND is characterized by two
original features. It explores multiple neighborhoods according to a dynamic
order determined by reinforcement learning. To examine candidate solutions,
it uses strategic oscillation to consider both feasible and infeasible solutions
in a carefully controlled manner.

2.6.1 Rationale and general RL-SOVND framework

RL-SOVND explores multiple neighborhoods sequentially with the VND frame-
work (Mladenović & Hansen, 1997), raising the important question of how to
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determine the order of checking these neighborhoods. Two common strate-
gies for determining this order are the random strategy and the prefixed-order
strategy. The random strategy inspects the given neighborhoods in a random
order. The prefixed-order approach examines the neighborhoods in a fixed se-
quence, typically determined according to the computational complexity of
the neighborhoods.

However, the random approach does not differentiate the neighborhood struc-
tures and ignores the intrinsic differences between the neighborhoods. On the
other hand, when using the predefined approach, one faces the difficulty of
determining an appropriate order for neighborhood inspection. In addition,
the best order may change during the search process, making it impossible to
find an all-time best order. An interesting alternative strategy for neighbor-
hood examination is to determine the order according to the specific problem
instance to be solved and the search context of the algorithm.

To do this, we consider the determination of the neighborhood exploration
order as a sequential decision-making problem and use reinforcement learning
to dynamically make the best possible decision. In particular, RL-SOVND
uses the renowned reinforcement learning algorithm Q-learning (Watkins &
Dayan, 1992).

On the other hand, it is known that visiting infeasible solutions during the
search process can be beneficial, as shown in studies on constrained prob-
lems (Li et al., 2024; Wei et al., 2023; Zhou et al., 2021). This benefit arises
from the increased freedom it provides to visit infeasible solutions, allowing
the algorithm to more effectively transition between different feasible search
regions via infeasible regions. In RL-SOVND, we use the general strategic os-
cillation method (Glover & Hao, 2011), which allows the algorithm to search
in both feasible and infeasible regions with a focus on feasible and infeasible
boundaries. For this, we devise a mechanism to prevent, based on a penalty
parameter β and search information, the algorithm from getting stuck in either
feasible or infeasible space for too long.

Algorithm 2 shows the general RL-SOVND framework. Initially, the penalty
parameter β (Section 2.6.3) is set based on the objective value f(S) of the
input solution S and the total customer demand ∑

i∈C
pi (line 3). The algorithm

then enters the main loop to improve the current solution (lines 5-29). Within
this loop, the neighborhood structures included in the set N (see Section
2.6.3) are systematically explored. The selection of the next neighborhood Nδ

to be examined is determined using Q-learning (line 10, Section 2.6.2). This
is done based on the current state St (comprising the explored neighborhood
structures) and the historical search information contained in the Q-table Q
and the reward matrix R. For the chosen neighborhood Nδ, the neighborhood
solutions are explored using the first improvement strategy (line 11). Subse-
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Algorithm 2 Pseudo-code of RL-SOVND
Input: Input solution S, set of neighborhoods N , slide window length up, Q-table

Q, reward matrix R
Output: Local optimum Sl, updated Q-table Q, and reward matrix R
1: If , Ii ← 0 /* Set counters on consecutive feasible and infeasible solutions */
2: Improve← true
3: β ← f(S)∑

i∈C

pi
/* Initialize the penalty parameter β */

4: Sl ← S /* Record the local optimum solution */
5: while Improve do
6: Improve← false
7: ne ← 0 /* Initialize the number of explored neighborhood structures */
8: St.clear() /* Set the current state of explored neighborhoods */
9: while ne < |N | do
10: Nδ ← Q-learning(St,Q,R)
11: S′ ← S ⊕Nδ /* Perform the first improvement with Nδ */
12: St.append(Nδ) /* Update the state */
13: Update Q, R /* See Section 2.6.2 */
14: if F (S′) < F (S) then
15: S ← S′ /* Accept a better solution under F , see Section 2.6.3 */
16: if Is_feasible(S′) and f(S′) < f(Sl) then
17: Sl ← S′ /* Update the local optimum solution */
18: end if
19: Update Ii, If
20: if Ii > up or If > up then
21: Adjust the penalty parameter β /* See Section 2.6.3 */
22: end if
23: Improve← true
24: break
25: else
26: ne ← ne + 1
27: end if
28: end while
29: end while
30: return Sl, Q, R /* Return Sl, Q, and R */

quently, St, Q and R are updated based on the outcome of the executed action
(lines 12-13). If an improved solution S ′ is found in the neighborhood Nδ under
the extended objective function F (Section 2.6.3), the current solution S is up-
dated (line 15). Moreover if S ′ is feasible and is better than the recorded best
feasible solution found during the current RL-SOVND run, Sl is also updated
by S ′ (line 17). The counter for consecutive accepted feasible or infeasible
solutions is also updated (line 19), and the penalty parameter β is adjusted
if the predefined condition is met (lines 20-21). Then, the algorithm returns
to the beginning of the main loop (line 23). If no improvement is achieved
with the current neighborhood, the next neighborhood structure is explored.
The algorithm terminates after exploring all neighborhood structures without
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improvement, and the best local optimum solution Sl, the updated Q-table Q
and reward matrix R are returned (line 30).

2.6.2 Q-learning for deciding the exploring order

Q-learning uses the so-called Q-value function to estimate the expected long-
term cumulative reward associated with performing a particular action within
a given state. We use Q-learning to determine the most suitable neighbor-
hood to explore in order to improve the current solution, considering that
some neighborhoods have already been explored. We define the fundamen-
tal notations of Q-learning including states, actions, transition policy, and
rewards used in our algorithm as follows.

• States (ST ): The state set comprises the explored neighborhood structures.
• Actions (A): The set of available actions depends on the current state. In a

given state st, there is a specific action set denoted as A(st), consisting of
the neighborhood structures that have not yet been examined.
• Rewards (R): An immediate reward r = R(st, a) is assigned when an action
a ∈ A(st) is executed at the current state st. The reward matrix R is
updated after the selected neighborhood is examined. Further details about
the updating process can be found below.
• Transition policy: The algorithm employs an ε-greedy policy to govern state

transitions between different states. This policy selects with a probability of
ε the action a∗ from the action set A(st) of current state st that maximizes
the Q-value, i.e., a∗ = argmaxQ(st, a), where a ∈ A(st). Meanwhile, there
is a probability of 1-ε to randomly choose an action.

After the execution of the chosen action, the Q-table is updated according to
Equation 2.

Q(st, a) = (1− α)Q(st, a) + α[R(st, a) + γ max
a′∈A(st′)

(Q(st′, a′))] (2)

In this equation, st represents the current state, a corresponds to the current
action, st′ denotes the next state resulting from the current action a, and α
and γ, both in the range of [0,1], are the learning rate and discount factor,
respectively. The values stored in R represent the reward values associated
with specific actions in a given state. When an action is executed, either an
improved solution or a local optimal solution among all the neighbourhood
solutions is found, denoted as Sr. We use the objective value f(Sr) of Sr to
update the reward value associated with the state-action pair. We define two
terms: ∆r = f(Sc) − f(Sr), which can be either positive or negative, and
∆b = f(Sb)− f(Sr), where Sc represents the current solution before executing
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the selected neighborhood, and Sb is the global best solution found. The update
mechanism for the reward values is described by Equation 3.

R(st, a) =

ξR(st, a) + ∆r +max(0,∆b)e
|N |−|A(st)| if ∆r > 0

ξR(st, a) + ∆r if ∆r < 0
(3)

where ξ denotes the discount coefficient, set to 0.95. This coefficient is used to
reduce the influence of historical information and to give more weight to recent
performance. N is the set of neighborhoods (see Section 2.6.3). In particular,
when a new best solution is found, an additional bonus reward is given, which
increases with the number of neighborhoods explored. This is because more
reward should be given as high-quality neighborhood solutions become scarcer.

2.6.3 Variable neighborhood descent with strategic oscillation

The VND procedure in our algorithm explores seven distinct neighborhood
structures induced by the following move operators.

N1 (Relocate). It relocates a customer node from its initial location to another
position within the same or a different route.

N2 (Swap). It is associated with both customer nodes and depot nodes. It
involves swapping the positions of two nodes, which can be from the same or
different routes. The nodes to be swapped must be of the same type, i.e. a
customer node can only be swapped with another customer node, and similarly
for depot nodes.

N3 (2-opt). It can be applied to the nodes within the same route (intra-route)
or the nodes of different routes (inter-route). The intra-route operator deletes
two non-adjacent edges and adds two new edges. Meanwhile, the edges between
the deleted edges are reversed. The inter-route operator, also called 2-opt*,
deletes two edges and adds two new edges.

N4 (2-relocate). It relocates two consecutive customer nodes from their original
positions to different locations within the same or different routes.

N5 (Node-arc swap). It swaps the positions of a customer node and an arc
(two consecutive customer nodes), which can occur within the same route or
between different routes.

N6 (Arc-arc swap). It swaps two consecutive customer nodes from either the
same or different routes.
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N7 (Swap∗). This is an inter-route operator that selects two customers from
different routes, removes them from their original positions, and inserts them
into the best position within each other’s route. This move operator is only
executed when the routes of the selected customers overlap, following the
approach in Vidal (2022).

It’s worth noting that we limit the neighborhood of each customer to include
only the δ-nearest vertices, where δ < |V |. The reason for this is that solutions
involving edges with long distances are less likely to be of high quality. This
method increases the computational efficiency by avoiding the examination of
less promising solutions. Notably, this approach has been shown to be effective
in solving other routing problems (Helsgaun, 2000; Toth & Vigo, 2003).

RL-SOVND uses the general strategic oscillation method (Glover & Hao, 2011)
to explore both feasible and infeasible solutions within these neighborhood
structures. To evaluate an infeasible solution, we define an extended objective
function F , as shown in Equation 4, which is a combination of the objective
function f and a penalty term to deal with constraint violations, where rk is
the set of customers visited by vehicle k. The second term in this equation
represents the degree to which the vehicle capacity is exceeded by the vehicles
used. The penalty parameter β is used to balance the exploration of feasible
and infeasible search spaces and is dynamically adjusted using search informa-
tion. This helps the algorithm not to get stuck in feasible or infeasible space
for too long.

F (x) = f(x) + β
∑
k∈H

max(0,
∑
i∈rk

pi − P ) (4)

Specifically, the VND procedure maintains a sliding window of length of up
iterations to evaluate the feasibility of the accepted solutions within the win-
dow. If all accepted solutions are feasible, we decrease the penalty parameter
to promote exploration of infeasible spaces. Conversely, if all solutions in the
window are infeasible, we increase the penalty parameter to encourage the al-
gorithm to explore feasible spaces. If both feasible and infeasible solutions are
accepted within the window, we keep the penalty parameter unchanged. The
specific method for adjusting this parameter is shown in Equation 5 where
Ii is the number of accepted infeasible solutions in the sliding window, If is
the number of accepted feasible solutions, up is the predefined threshold for
adjusting β, and rand(0, 1) is a random number 0 or 1.

15



β =

β(1.5 + rand(0, 1)) if Ii = up
β

1.5+rand(0,1)
if If = up

(5)

2.7 Population updating

Population updating aims at maintaining an appropriate diversity among the
solutions in the population. The updating mechanism used takes into account
both the quality of the solution and its contribution to the population diversity.
The contribution to diversity is assessed by measuring the distance between
the new solution and the population.

Given two solutions, Sa and Sb, their distance is the number of non-common
edges between the solutions, which is determined by Equation 6, where E rep-
resents the arc set of a solution. Accordingly, the distance between a solution
and the population is defined as the minimum distance between this solution
and any solution from the population (excluding itself if it is also part of the
population), as shown in Equation 7.

IDist(Sa, Sb) = |Ea| − |Ea ∩ Eb| (6)

PDist(S, Pop) = min{IDist(S, Si) : Si ∈ Pop \ S} (7)

We employ this method to determine whether a new solution from the lo-
cal search procedure (RL-SOVND) should be added to the population. We
first check if there is a clone of the new solution in the population (i.e.,
PDist(S, Pop) = 0). If this is the case, we discard the new solution. Oth-
erwise, we add the new solution into the population, resulting in a modified
population called Pop′. Next, we re-evaluate the fitness of all solutions in Pop′
using their quality and distance to this population by Equation 8, and the so-
lution with the worst fitness value is removed from the population. In this
equation, a normalization is applied since the quality and distance values are
not of the same dimension. We define fmax = max{f(Si) : Si ∈ Pop′} and
fmin = min{f(Si) : Si ∈ Pop′} as the maximum and minimum objective values
within the population Pop′. Additionally, PDmax = max{PDist(Si, Pop

′) :
Si ∈ Pop′} and PDmin = min{PDist(Si, Pop

′) : Si ∈ Pop′} represent the
maximum and minimum distances between the solutions and the population.
The parameter ψ is empirically set to 0.55.
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fit(S) = ψ
fmax − f(S)
fmax − fmin

+ (1− ψ)PDist(S, P
′)− PDmin

PDmax − PDmin

(8)

If the best solution found so far is not updated during Ir (set to 1000) consec-
utive generations, indicating a search stagnation, we introduce diversity into
the population to facilitate escape from deep local optima. First, we randomly
remove half of the solutions in the population, while keeping the best solution.
Then, for the given population size, new solutions are added either using the
random initialization method (Section 2.2) or by randomly selecting solutions
from an adaptive memory M . The adaptive memory stores the most recent
3000 local optima found by the local search procedure RL-SOVND. To intro-
duce more diversity into the population, only solutions in the first half of M
are considered, corresponding to the solutions added to the memory earlier.

2.8 Discussions

Our RLHEA algorithms has a number of novelties compared to the existing
methods.

The MPEAX crossover is derived from the dEAX crossover of the two-individual
evolutionary algorithm (TIEA) for the CCVRP and MDCCVRP (Zou et al.,
2024), which can be regarded as special cases of the LLRP. MPEAX is divided
into two phases, each with two parent solutions. For each phase, MPEAX and
dEAX share the same operations for the first three steps, while the remaining
two steps are different. In fact, since the number of open depots in the LLRP
is limited, the intermediate solution (step 4) may require solution repair by
selecting the given number of open depots.

In addition, MPEAX extends the dEAX crossover by incorporating three par-
ent solutions to mitigate the loss of diversity resulting from considering the
direction of edges during the crossover procedure. When using three parent
solutions, the crossover order of the three parents needs to be carefully consid-
ered. Indeed, compared to the first two parents, the features of the last parent
are only diluted once by crossover, increasing the opportunity of transmitting
its edges to the offspring solution. For MPEAX, based on this observation, we
select the individual with the shortest life in the population (inserted into the
population last) as the third parent, which effectively enhances the diversity
of the population.

Compared to the work (Moshref-Javadi & Lee, 2016), which uses a simple OX
crossover applied to a giant tour, the MPEAX crossover allows the offspring
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to naturally inherit the common edges from the parents. This is beneficial for
creating more promising offspring and thus increasing the search efficiency of
the algorithm.

Finally, our local search procedure, RL-SOVND, follows the general VND
framework, which relies on multiple neighborhoods. This raises the critical
issue of determining the best exploration order of the adopted neighborhoods.
Compared to other methods that also use VND to solve routing problems (Ren
et al., 2023; Zou et al., 2024), our RLHEA algorithm differs in its approach to
learn the best neighborhood exploration order from the search information.
In fact, most existing methods explore their neighborhoods in a fixed or ran-
dom order. In contrast, RLHEA uses Q-learning to dynamically determine the
best neighborhood exploration order. This adaptive approach makes RLHEA
more effective and improves its performance, as demonstrated in Section 4.3.
And it can be applied to any local search algorithm involving a portfolio of
neighborhoods or search operators.

3 Computational results

We now present an extensive computational evaluation of the RLHEA algo-
rithm on the benchmark instances for the LLRP and a comparison with the
state-of-the-art algorithms.

3.1 Benchmark instances

We use three sets of 76 benchmark instances introduced by Moshref-Javadi &
Lee (2016).

Set Tuzun-Burke: This dataset consists of 36 instances with 100 to 200 cus-
tomers and 10 to 20 depots, and is considered as the most challenging of the
benchmark instances. No optimal solutions have been reported in this set.

Set Prodhon: This dataset contains 30 instances with 20 to 200 customers and
5 to 10 depots. 11 instances have been solved optimally in the literature.

Set Barreto: This dataset consists of 10 instances with 21 to 134 customers
and 5 to 14 depots. Six instances with less than 50 customers have been solved
optimally in the literature.
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3.2 Experimental conditions and reference algorithms

The RLHEA algorithm has the following main parameters: mutation prob-
ability mp, mutation length ml, learning rate α, discount factor γ, greedy
probability ε, length of the sliding window up, and neighborhood reduction
parameter δ. To determine suitable values for these parameters, we employed
the automatic parameter tuning package Irace (López-Ibáñez et al., 2016).
Through the tuning process, we obtained the configuration presented in Table
1. This configuration represents the default parameter setting for our algo-
rithm. Moreover, RLHEA uses a population of 20 individuals.

Table 1
Parameter tuning results

Parameter Related section Description Considered values Final values

mp 2.5 mutation probability {0,0.1,0.2,0.3} 0.1
ml 2.5 mutation length {1,2,3,4,5} 2
α 2.6.2 learning rate {0.1,0.2,0.3,0.4,0.5} 0.2
γ 2.6.2 discount factor {0.8,0.85,0.9,0.95} 0.85
ε 2.6.2 probability of ε-greedy {0.7,0.75,0.8,0.85,0.9,0.95} 0.7
up 2.6.3 length of the slide window {2,4,6,8,10} 4
δ 2.6.3 granularity threshold {10,15,20,25,30} 20

According to the literature review in Section 1, four studies have addressed
the LLRP problem. The earliest algorithm MA (Moshref-Javadi & Lee, 2016)
retains only few best-known solutions. Consequently, we have excluded it
from our comparative study. The reference algorithms for comparison include
GBILS proposed in (Nucamendi-Guillén et al., 2022), three algorithms (SA-
VND0, SA-VND1, SA-AND2) introduced in (Osorio-Mora et al., 2023b), and
the M-ILS algorithm presented in (Osorio-Mora et al., 2023a). The M-ILS
algorithm has two versions, one yielding superior results with 30 runs and
another with 5 runs; in our study, we exclusively compared with the former
(with 30 runs). For the Set Tuzun-Burke, there is no result reported for the
GBILS algorithm. Among these algorithms, M-ILS stands out as the most
powerful, retaining almost all of the current best-known solutions.

Our RLHEA algorithm was programmed in C++ and compiled using the g++
10.2.1 compiler with the -O3 optimization option. The experiments were con-
ducted on a Xeon E5-2670 processor operating at 2.5GHz with 2GB RAM,
running Linux with a single thread. Our algorithm was executed 30 times for
each instance, following the approach employed by M-ILS. The stopping condi-
tion for our algorithm was set to 5000 generations (crossovers). For the three
algorithms SA-VND0, SA-VND1, SA-VND2, and the M-ILS algorithm, the
authors generously provided the C++ source codes that we ran on our com-
puter, making it possible to perform a fair comparative study. The algorithm
parameters and stopping conditions are set to match the criteria outlined in
the original paper. The tested instances and the best solutions achieved by
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our algorithm are accessible online 1 , and the code of our RLHEA algorithm
will also be made publicly available.

3.3 Computational results and comparison

Table 2 provides a summary of the comparative results on the three datasets
between our RLHEA algorithm and the reference algorithms, while Tables
A.1–A.3 of the Appendix show the detailed results, including the best and
average objective values as well as the average CPU running time. In Table
2, the first column represents the dataset. Columns fbest and favg provide a
summary in terms of the best and average objective values achieved among 30
independent runs. The column labeled ”#Wins” indicates the number of in-
stances where RLHEA outperformed the reference algorithm, ”#Ties” shows
the number of instances with equal results, and ”#Losses” indicates the num-
ber of instances where RLHEA performed worse than the reference algorithm.
The p-values from the Wilcoxon signed-rank test (with a significance level of
0.05) applied to the best and average values are also indicated, verifying the
statistical significance of the performance differences between RLHEA and
each reference algorithm. ”BKS” represents the best-known solutions ever re-
ported so far in the literature.

The results in Table 2 show that our RLHEA algorithm is highly competi-
tive compared to the reference algorithms in the best and average objective
values. Overall, RLHEA achieved new best-known solutions for 51 (out of
76) instances and matched all best-known results for the remaining instances
(with no worse results). Specifically, for the most challenging set Tuzun-Burke,
our algorithm discovered 31 new record-breaking solutions out of the 36 in-
stances. For the set Prodhon, RLHEA reported 18 new best results out of the
19 instances whose optimal solutions were unknown, and for the set Barreto,
it reached new best results for 2 out of the 4 instances with unknown optimal
solutions. Regarding the average objective value, RLHEA outperforms the ref-
erence algorithms in all instances in the set Tuzun-Burke. For the set Prodhon
and the set Barreto, RLHEA also reports many better average results with no
worse results. The p-values for fbest and favg, excluding the set Barreto due to
the small sizes of the instances, are all less than 0.05.

3.4 Assessment of computational efficiency

From the detailed results of Tables A.1–A.3, we observe that our algorithm
exhibits significant competitiveness in running time compared to the leading
1 https://github.com/YujiZou/LLRP
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Table 2
Summarized comparison results of RLHEA against the reference algorithms in terms
of the best and average objective values on the three sets of 76 LLRP instances.

Instance Pair algorithms
fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke

RLHEA vs. BKS 31 5 0 1.32e-5 - - - -
RLHEA vs. MILS 32 4 0 9.0e-6 36 0 0 2.84e-6
RLHEA vs. SA-VND0 36 0 0 2.84e-6 36 0 0 1.53e-6
RLHEA vs. SA-VND1 35 1 0 3.56e-6 36 0 0 1.41e-6
RLHEA vs. SA-VND2 35 1 0 3.86e-6 36 0 0 1.53e-6

Prodhon

RLHEA vs. BKS 18 12 0 1.96e-4 - - - -
RLHEA vs. MILS 19 11 0 1.32e-4 27 3 0 5.61e-6
RLHEA vs. SA-VND0 21 9 0 5.96e-5 26 4 0 8.29e-6
RLHEA vs. SA-VND1 21 9 0 5.96e-5 26 4 0 8.30e-6
RLHEA vs. SA-VND2 21 9 0 5.96e-5 26 4 0 8.30e-6
RLHEA vs. GBILS 26 4 0 8.30e-6 - - - -

Barreto

RLHEA vs. BKS 2 8 0 0.18 - - - -
RLHEA vs. MILS 3 7 0 0.11 8 2 0 0.01
RLHEA vs. SA-VND0 3 7 0 0.11 7 3 0 0.02
RLHEA vs. SA-VND1 4 6 0 0.07 7 3 0 0.02
RLHEA vs. SA-VND2 4 6 0 0.07 6 4 0 0.03
RLHEA vs. GBILS 3 5 0 0.11 - - - -

algorithms SA-VND0, SA-VND1, SA-VND2, and M-ILS. To further demon-
strate the effectiveness of our algorithm, we conducted a Time-to-Target anal-
ysis (TTT) (Aiex et al., 2007). This analysis measures the time required for
each algorithm to achieve a solution with an objective value at least as good as
a predefined target objective value. The TTT presents the empirical probabil-
ity distributions within the given time to reach the target value. In our TTT
analysis, we performed each algorithm (with the source code) 100 times on
different instances, recording the time taken to reach the target value. Subse-
quently, we sorted the times in ascending order and calculated the probability
ρi = (i− 0.5)/100 for each time Ti, where Ti represents the ith smallest time.

Fig. 2 illustrates the TTT plots for four large instances (122122, 123112,
123212, 200-10-1b) from the set Tuzun-Burke and set Prodhon. The x-axis
represents the time needed to reach the target value, while the y-axis repre-
sents the cumulative probability ρi of reaching the given target value. The
figures show that the TTT curves of our algorithm are consistently above
the curves of the reference algorithms, indicating that our algorithm always
has a higher probability of reaching the given target value within the same
running time. This experiment shows the competitiveness of RLHEA with
state-of-the-art algorithms in terms of computational and search efficiency.
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Fig. 2. Cumulative probability distribution for the time to reach a target value.

4 Analysis

In this section, we conduct additional experiments to gain deeper insights into
the individual influences of the main components of the RLHEA algorithm.
We focus on the critical components: the MPEAX crossover, the Q-learning
method and the strategic oscillation method.

4.1 Rationale behind the MPEAX crossover

Previous studies on the TSP (Nagata & Kobayashi, 2013), the VRP (Arnold
& Sörensen, 2019), and their variants (He & Hao, 2023a) have revealed that
high-quality solutions in these problems often share many common edges,
which are likely to be part of the optimal solution. We show experimentally
that this is also true for the LLRP, which provides a basis for the MPEAX
crossover. Indeed, like the EAX crossover for the TSP, the MPEAX crossover
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takes advantage of this property by transferring common edges from parent
solutions to the offspring, while introducing new edges to increase the diversity
of the offspring.

For this study, we focus on two representative instances 121222 and 200-3-
1. We ran RLHEA to solve each instance 50 times and collected 15 distinct
high-quality local optimal solutions in each run, resulting in a total of 750
unique local optimal solutions per instance. We sorted these 750 solutions
in increasing order of their objective values and selected the top 250 (best)
solutions and the 250 worst solutions to form the final set of 500 solutions.
We then calculated the number of common arcs for each pair of solutions and
presented the results as a heat map, as shown in Fig. 3(a) and Fig. 4(a). The
x-axis and y-axis represent the rank of the solutions in the solution set, and
the color represents the number of common arcs. A color closer to red indicates
more common arcs, while a color closer to blue indicates fewer common arcs.
To further illustrate this property, in Fig. 3(b) and Fig. 4(b) we show the
percentage of arcs that a solution S shares with the best solution, where the
percentage is calculated by |Eb∩Es|

|Es| , where Eb is the arc set of the best solution
and Es is the arc set of the solution S.

The heatmaps of the two studied instances exhibit the same trend, we can
clearly see that the lower-left corner, where the shared edges between high-
quality solution pairs are shown, is colored with deep red. The top-right is
colored with blue, indicating that solution pairs with poor objective values
share fewer edges. Additionally, in the figures showing the relationship between
the objective value and the number of shared edges with the best solution, we
observe the trend that solutions with higher objective values share more edges
with the best solution.

We can conclude that in the LLRP, high-quality solutions also share a high
number of common edges, which provides a foundation for the MPEAX crossover
to inherit common edges from the parents during the crossover process.

4.2 Benefits of the MPEAX crossover

As presented in Section 2.3, RLHEA’s MPEAX crossover uses three parent
solutions to address the problem of diversity degradation due to edge orien-
tation considerations in the crossover process. To study the benefits of this
method, we created two algorithm variants, RLHEA1 and RLHEA2. In RL-
HEA1, we replaced MPEAX with the order crossover used in Moshref-Javadi
& Lee (2016) for the LLRP. In RLHEA2, we applied the MPEAX crossover
to only two parent solutions. The remaining components for the two algo-
rithm variants are identical to RLHEA, including the stopping condition set
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Fig. 3. The heatmap for the number of shared edges of solution pairs and the
scatter plot for edge sharing ratio between solutions and the best-known solution
on instance 121222.
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Fig. 4. The heatmap for the number of shared edges of solution pairs and the scatter
plot for arc sharing ratio between solutions and the best-known solution on instance
200-3-1.

to 5000 generations. We ran the algorithm variants on the large instances with
at least 100 customers from the sets Tuzun-Burke (36 instances) and Prodhon
(18 instances).

Table 3 shows the comparative results of RLHEA with the two variants in
terms of the best and average objective values over 30 independent runs, along
with the p-values from the Wilcoxon signed-rank test. Fig. 5 shows the devia-
tion of the two variants from the reference values given by RLHEA. In Fig. 6,
we present violin plots of the three algorithms on four large instances (121122,
121212, 123122, and 200-10-2), illustrating the distribution of objective values
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for the solutions obtained over the 30 independent runs. Looking at the re-
sults, it is evident that the RLHEA algorithm with the three-parent MPEAX
crossover significantly outperforms the two variants, especially in terms of the
average values, confirmed by the small p-values. The violin plots clearly show
that the solutions found by our RLHEA are more stable, demonstrating its
robustness compared to the two variants. We conclude that RLHEA benefits
from the edge assembly crossover method and the use of multiple parents in
the crossover procedure.
Table 3
Summarized comparison results of RLHEA against the RLHEA1 and RLHEA2
variants in terms of the best and average objective values on the 54 large instances.

Instance Pair algorithms
fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke (36)
RLHEA vs. RLHEA1 12 24 0 2.22e-3 33 1 2 2.77e-2
RLHEA vs. RLHEA2 6 30 0 4.95e-6 27 6 3 7.68e-6

Prodhon (18)
RLHEA vs. RLHEA1 7 11 0 1.80e-2 16 1 1 6.00e-4
RLHEA vs. RLHEA2 2 16 0 0.18 15 2 1 9.35e-4
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Fig. 5. Comparative results of RLHEA with its two variants RLHEA1 and RLHEA2
on the 54 large instances.

4.3 Benefits of Q-learning

As shown in Section 2.6.3, the local search procedure uses Q-learning to deter-
mine the order in which the seven neighborhoods are explored. To evaluate the
usefulness of this method, we created two algorithm variants, RLHEA3 and
RLHEA4. The only difference between the two variants is the order of neigh-
borhood exploration during local search, while the rest of the procedures re-
mains the same. RLHEA3 uses a random order for neighborhood exploration,
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Fig. 6. Violin plots of RLHEA, RLHEA1 and RLHEA2 for four instances.

while RLHEA4 explores the neighborhoods in the fixed order N1-N2-N3-N4-
N5-N6-N7, which reflects the increasing complexity of these neighborhoods.
We ran both algorithms on the 54 large instances as in Section 4.2.

Table 4 summarizes the comparison of the results of RLHEA, RLHEA3 and
RLHEA4 in terms of the best and the average objective values. Additionally,
Fig. 8 shows violin plots for the three algorithms on four instances (121122,
121212, 123122, and 200-10-2), indicating the deviation of the two variants
from the reference values of RLHEA. The results show that RLHEA outper-
forms RLHEA3 and RLHEA4 in terms of the best objective values and espe-
cially in terms of the average objective values. The violin plots further show
that the solution distribution obtained by RLHEA is more stable. In conclu-
sion, the RLHEA algorithm performs better than the variants, benefiting from
the Q-learning method to determine the exploration order of neighborhoods.

4.4 Benefits of strategic oscillation

As shown in Section 2.6, RLHEA uses strategic oscillation to examine both
feasible and infeasible solutions by adaptively adjusting the penalty parameter
β. To evaluate the benefit of this method, we created two variants, RLHEA5
and RLHEA6. RLHEA5 visits only feasible solutions, while RLHEA6 uses a
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Table 4
Summarized comparison results of RLHEA against the RLHEA3 and RLHEA4
variants in terms of the best and average objective values on the 54 large instances.

Instance Pair algorithms
fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke(36)
RLHEA vs. RLHEA3 3 33 0 0.11 28 4 4 1.63e-5
RLHEA vs. RLHEA4 5 31 0 0.04 36 0 0 2.56e-6

Prodhon(18)
RLHEA vs. RLHEA3 3 15 0 0.11 12 3 3 7.55e-3
RLHEA vs. RLHEA4 3 15 0 0.11 13 3 2 1.33e-3
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Fig. 7. Comparative results of RLHEA with its two variants RLHEA3 and RLHEA4
on the 54 large instances.

fixed penalty parameter, which is set to the average cost per demand unit
for each route of the VND input solution after the repair procedure. The
summarized results of RLHEA, RLHEA5 and RLHEA6 are shown in Table
5. From the results, we can see that compared to the two variants, RLHEA,
which uses strategic oscillation to balance the visit of feasible and infeasible
solutions, achieves better results in terms of the best and average objective
values, showing the usefulness of the strategic oscillation method.

Table 5
Summarized comparison results of RLHEA against the RLHEA5 and RLHEA6 vari-
ants in terms of the best and average objective values on the 54 selected instances.

Instance Pair algorithms
fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke(36)
RLHEA vs. RLHEA5 6 30 0 0.03 30 3 3 5.91e-6
RLHEA vs. RLHEA6 3 33 0 0.11 26 6 4 1.24e-5

Prodhon(18)
RLHEA vs. RLHEA5 3 15 0 0.11 18 0 0 7.63e-6
RLHEA vs. RLHEA6 2 16 0 0.18 14 2 2 1.12e-3
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Fig. 8. Violin plots of RLHEA, RLHEA3 and RLHEA4 on four instances.

5 Conclusion

The latency location routing problem is a relevant model for various real-world
problems, and a number of studies have proposed methods to solve this NP-
hard problem. In this study, we introduced a reinforcement learning guided
hybrid evolutionary algorithm to tackle this challenging problem. The algo-
rithm consists of three key features. Its multi-parent edge assembly crossover
with three parent solutions is capable of generating promising offspring so-
lutions while enhancing solution diversity to mitigate diversity degradation
by taking route orientation into account during the crossover procedure. Its
Q-learning driven variable neighborhood descent dynamically determines the
exploration order of multiple neighborhoods based on knowledge learned from
the search history. The use of strategic oscillation during local optimization
helps to dynamically visit different feasible search spaces by traversing infea-
sible search spaces.

We evaluated the proposed algorithm on the 76 benchmark instances com-
monly used in the literature and compared it with leading algorithms. Our
approach achieved 51 new best solutions while matching the best known re-
sults for the remaining instances. In addition, we performed experiments to
shed light on the key components of our algorithm and reveal the rationale
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behind these components.

The design principles behind the proposed algorithm are general and can be
used to design effective algorithms for other problems. In particular, the idea
of multi-parent edge assembly crossover is of interest for multi-route problems.
The Q-learning technique used to determine the order of neighborhood explo-
ration can contribute to the performance of local search methods that involve
a portfolio of neighborhoods or search operators. Finally, the algorithm and
its codes, which we will make publicly available, can be applied to practical
applications related to the latency location routing problem.
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A Detailed comparison results

This section shows the detailed comparison results by the RLHEA algorithm
and the reference algorithms, including GBILS (Nucamendi-Guillén et al.,
2022), SA-VND0, SA-VND1, SA-VND2 (Osorio-Mora et al., 2023b) and M-
ILS (Osorio-Mora et al., 2023a). Tables A.1 to A.3 show the comprehensive
results on the three datasets, Tuzun-Burke, Prodhon, and Barreto, respectively.
The ”Instances” column presents information about each instance, including
the name, number of customers Nc, number of depots Nd, and the fleet size
Nv. Note that in the Prodhon and Barreto sets, the size information, such
as the number of customers and depots, can be inferred from their names, so
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this information is not listed separately. The ”BKS” column shows the current
best-known objective value for each instance reported in the literature, where
underlined values are proven optimal values. The columns fbest and favg give
the best objective value and the average value over all independent runs. Tavg
shows the average running time in seconds. It should be noted that the running
times shown for the algorithms SA-VND0, SA-VND1, SA-VND2, and M-ILS
are the times observed on the same computer used for our RLHEA algorithm.
To ensure a fair comparison, a scaling factor of 1.02 was applied to the running
time of GBILS, based on the single-thread performance, as indicated by the
machine information 2 . The best solutions among the compared results are
highlighted in bold in the tables. The improved best solutions (new upper
bounds) are marked with an asterisk *.

2 https://www.cpubenchmark.net/
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Table A.1
Comparative results of the RLHEA algorithm with the reference algorithms on the set Tuzun-Burke.

Instances SA-VND0 SA-VND1 SA-VND2 M-ILS RLHEA

Name Nc Nd Nv BKS fbest favg Tavg fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg

111112 100 10 11 3834.91 3862.86 3971.50 164.54 3892.97 3972.93 213.53 3887.86 3970.09 234.55 3834.91 3884.56 172.92 3826.78* 3827.15 81.67
111122 100 20 11 3602.70 3612.36 3694.70 168.76 3633.60 3712.64 218.58 3602.70 3693.00 252.69 3659.46 3698.24 182.33 3597.64* 3604.37 78.18
111212 100 10 10 3919.74 3960.24 4038.24 154.78 3988.11 4067.91 208.51 3963.34 4054.02 222.67 3919.74 3998.66 203.02 3901.18* 3902.75 101.06
111222 100 20 11 4065.04 4086.74 4140.33 170.05 4077.87 4147.90 211.86 4065.70 4135.25 249.10 4065.04 4134.88 182.71 4058.09* 4062.18 86.99
112112 100 10 11 2726.41 2739.16 2755.53 206.47 2740.21 2759.43 263.28 2749.48 2757.67 286.65 2726.41 2749.93 143.99 2726.41 2726.41 85.78
112122 100 20 11 2057.30 2060.29 2072.57 198.98 2057.45 2078.03 243.93 2060.29 2074.93 273.22 2057.30 2061.79 96.96 2056.84* 2056.84 60.14
112212 100 10 12 1394.65 1402.97 1416.20 208.88 1403.57 1416.72 280.59 1404.58 1415.56 300.11 1394.65 1409.73 136.47 1394.65 1394.65 56.27
112222 100 20 11 1618.93 1623.69 1633.00 219.86 1621.40 1633.94 276.28 1625.44 1634.90 293.26 1618.93 1631.37 139.87 1614.83* 1614.83 78.51
113112 100 10 11 2826.52 2837.51 2852.63 182.80 2835.76 2853.57 241.31 2833.66 2853.50 268.61 2826.52 2841.15 158.13 2826.52 2826.52 104.47
113122 100 20 11 2772.98 2776.39 2782.53 175.52 2774.36 2784.42 246.00 2776.39 2781.45 251.11 2772.98 2798.60 214.48 2772.98 2772.98 65.16
113212 100 10 12 1815.62 1817.00 1823.15 189.94 1815.62 1822.81 256.71 1815.62 1823.88 277.66 1817.00 1835.52 181.58 1815.62 1815.62 47.89
113222 100 20 11 1876.14 1876.14 1888.46 170.52 1879.63 1890.96 217.34 1878.17 1891.00 233.39 1876.58 1885.67 146.63 1874.42* 1874.45 68.21
131112 150 10 16 5411.43 5473.18 5582.94 320.34 5464.21 5570.12 507.95 5466.75 5589.24 545.67 5411.43 5478.14 319.87 5405.04* 5406.30 174.53
131122 150 20 16 4926.87 4993.36 5142.06 364.16 5009.26 5143.19 541.17 4967.39 5154.30 547.68 4926.87 5051.01 314.02 4870.82* 4884.55 182.04
131212 150 10 17 5558.83 5679.70 5787.34 371.24 5606.31 5785.18 603.00 5658.71 5776.08 564.77 5558.83 5637.11 341.80 5525.91* 5550.53 156.06
131222 150 20 17 5060.71 5141.89 5284.44 366.60 5126.95 5277.65 580.13 5166.72 5279.36 529.19 5060.71 5106.51 350.46 5039.22* 5068.44 180.93
132112 150 10 16 3850.90 3868.88 3895.91 491.93 3883.40 3899.41 757.98 3879.81 3901.40 728.69 3850.90 3881.92 305.86 3831.89* 3832.05 218.87
132122 150 20 16 3738.61 3740.10 3795.93 431.31 3752.76 3787.72 654.21 3768.60 3796.56 667.73 3738.61 3785.14 304.60 3721.93* 3722.67 176.88
132212 150 10 17 2835.66 2842.10 2857.29 519.25 2837.84 2860.70 741.29 2840.11 2855.58 761.57 2835.66 2848.89 275.57 2835.25* 2835.34 139.13
132222 150 20 17 1655.39 1660.89 1691.97 561.19 1672.86 1697.45 761.57 1669.51 1691.96 778.57 1655.39 1676.46 215.95 1646.45* 1646.56 178.13
133112 150 10 16 4581.60 4588.38 4619.91 399.98 4598.23 4630.69 572.31 4587.35 4633.07 596.78 4581.60 4615.95 235.00 4556.33* 4556.33 149.38
133122 150 20 16 3211.98 3223.44 3259.45 438.16 3225.56 3271.04 677.99 3227.27 3255.20 630.51 3211.98 3237.28 310.77 3208.21* 3208.60 178.17
133212 150 10 17 2903.36 2911.58 2938.05 531.82 2911.35 2938.01 761.78 2905.45 2938.41 769.77 2903.36 2919.40 246.40 2896.63* 2897.15 151.80
133222 150 20 17 2485.07 2502.97 2551.31 501.77 2502.68 2558.34 728.81 2507.87 2534.09 724.39 2485.07 2492.94 231.98 2484.68* 2484.68 182.02
121112 200 10 21 6573.72 6608.45 6821.20 762.24 6621.55 6881.38 1196.02 6721.82 6894.98 1180.02 6573.72 6628.07 502.90 6499.53* 6506.93 316.29
121122 200 20 22 5612.82 5730.53 5954.23 892.22 5788.72 5966.38 1392.03 5762.73 5935.57 1479.41 5612.82 5679.77 487.83 5571.24* 5592.63 320.55
121212 200 10 21 6394.33 6503.36 6613.84 791.44 6429.62 6608.92 1258.20 6512.62 6643.75 1237.28 6394.33 6450.87 505.81 6337.03* 6350.82 312.35
121222 200 20 21 6428.31 6551.73 6759.22 789.09 6562.11 6796.71 1324.77 6544.89 6769.32 1242.46 6428.31 6522.74 573.24 6349.27* 6382.93 320.36
122112 200 10 21 6111.52 6154.64 6255.10 883.92 6184.70 6280.31 1705.19 6192.70 6274.04 1153.85 6111.52 6203.24 833.95 6018.59* 6043.38 486.10
122122 200 20 21 3726.80 3757.37 3782.47 995.03 3757.27 3792.67 1547.20 3751.31 3786.07 1459.85 3726.80 3754.67 437.73 3705.59* 3709.02 264.10
122212 200 10 21 4018.86 4046.81 4075.78 922.81 4046.42 4078.60 1520.92 4048.88 4082.98 1352.78 4018.86 4036.49 380.40 4013.55* 4014.10 265.99
122222 200 20 22 2047.95 2054.32 2083.56 996.79 2052.22 2084.10 1530.59 2061.32 2081.97 1490.62 2047.95 2057.11 358.11 2033.34* 2033.52 316.88
123112 200 10 22 4868.90 4916.97 5024.07 908.81 4967.11 5047.87 1407.80 4931.24 5019.94 1489.04 4868.90 4916.56 520.88 4842.05* 4842.08 313.68
123122 200 20 22 4675.34 4725.91 4771.90 898.15 4707.60 4785.89 1350.76 4719.04 4761.84 1278.30 4675.34 4705.53 545.92 4647.68* 4654.10 320.55
123212 200 10 22 5135.21 5170.77 5218.43 868.24 5178.02 5225.04 1351.98 5183.34 5259.76 1172.57 5135.21 5174.88 332.78 5123.41* 5124.13 262.12
123222 200 20 22 2528.74 2567.20 2629.66 876.49 2555.18 2633.86 1363.16 2562.46 2602.87 1353.88 2528.74 2557.17 344.07 2494.58* 2494.58 263.87
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Table A.2
Comparative results of proposed RLHEA with the reference algorithms on the set Prodhon.

Instances GBILS SA-VND0 SA-VND1 SA-VND2 M-ILS RLHEA

Name Nv BKS fbest Tavg fbest favg Tavg fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg

20-5-1 5 330.00 330.00 0.34 330.00 330.00 9.85 330.00 330.00 8.59 330.00 330.00 13.11 330.00 330.00 13.92 330.00 330.00 3.23
20-5-1b 3 608.05 608.06 0.15 608.05 608.06 11.56 608.05 608.06 8.80 608.05 608.06 19.98 615.66 615.66 10.10 608.05 608.06 3.57
20-5-2 5 301.97 301.97 0.24 301.97 301.97 8.31 301.97 301.97 7.28 301.97 301.97 12.27 301.97 301.97 13.64 301.97 301.97 3.76
20-5-2b 3 486.55 486.55 0.25 486.55 486.55 12.31 486.55 486.55 10.23 486.55 486.55 20.68 486.55 486.55 10.10 486.55 486.54 3.69
50-5-1 12 843.93 846.88 50.32 846.17 849.77 59.10 846.51 850.10 58.17 844.63 849.66 69.99 843.93 845.75 48.57 843.93 843.93 15.71
50-5-1b 6 1293.46 1293.93 21.46 1293.46 1293.71 46.72 1293.46 1293.54 44.53 1293.46 1293.48 73.74 1293.46 1293.95 58.81 1293.46 1293.46 20.90
50-5-2 12 684.13 691.67 38.49 684.13 693.78 48.30 684.13 692.43 60.38 684.13 697.61 59.33 684.13 690.69 73.43 684.13 684.13 15.72
50-5-2b 6 953.25 954.88 22.44 953.25 953.50 39.05 953.25 953.35 39.71 953.25 953.40 63.61 953.25 953.68 48.90 953.25 953.25 16.73
50-5-2BIS 12 945.45 952.55 39.56 949.13 950.80 65.24 949.57 951.13 83.25 949.56 951.46 73.98 945.45 945.65 121.85 945.45 945.45 12.14
50-5-2bBIS 6 803.90 803.90 31.67 803.90 803.90 49.70 803.90 803.90 48.13 803.90 803.90 68.76 803.90 803.90 54.99 803.90 803.90 13.73
50-5-3 12 831.57 832.15 39.09 831.97 835.10 53.74 833.01 834.91 62.43 833.01 836.25 69.43 831.57 834.30 81.44 831.57 831.57 18.37
50-5-3b 6 1101.57 1106.57 22.75 1101.57 1103.15 39.30 1101.57 1103.94 41.72 1101.57 1102.47 61.71 1101.57 1102.49 37.31 1101.57 1101.57 19.59
100-5-1 24 2000.80 2035.60 21.24 2004.33 2023.35 246.05 2010.49 2023.78 378.85 2016.44 2028.27 307.25 2000.80 2012.06 184.89 1997.29* 1997.37 63.14
100-5-1b 12 2311.01 2357.87 33.69 2311.84 2336.64 182.67 2312.53 2337.27 227.13 2317.42 2336.82 252.54 2311.01 2346.47 171.41 2305.65* 2305.89 68.43
100-5-2 24 1128.12 1144.70 26.60 1132.36 1135.99 214.42 1129.83 1135.49 343.26 1132.68 1136.61 282.63 1128.12 1133.17 198.13 1126.39* 1126.39 65.69
100-5-2b 11 1507.88 1567.44 31.73 1507.88 1517.11 205.25 1510.57 1519.04 247.41 1510.24 1519.44 271.72 1507.88 1511.89 119.62 1506.79* 1506.79 84.88
100-5-3 24 1572.61 1596.77 16.12 1581.93 1587.20 219.07 1581.93 1586.49 344.91 1579.38 1587.41 283.76 1572.61 1582.05 233.51 1567.62* 1568.22 59.34
100-5-3b 11 1933.70 2032.13 37.66 1933.70 1950.89 180.90 1935.70 1953.85 258.79 1940.47 1955.56 255.64 1934.93 1954.50 163.38 1932.96* 1933.07 73.12
100-10-1 26 1458.80 1481.56 26.33 1472.85 1511.00 247.27 1470.71 1503.92 371.15 1461.53 1513.44 333.90 1458.80 1464.80 196.75 1457.53* 1457.68 59.80
100-10-1b 12 1899.80 1984.91 33.05 1901.27 1953.96 193.46 1915.77 1972.26 253.50 1926.32 1963.33 255.59 1899.80 1918.20 186.81 1894.92* 1895.83 63.40
100-10-2 24 1137.59 1287.50 24.84 1143.30 1152.81 251.82 1142.31 1155.47 370.05 1141.45 1156.81 332.11 1137.59 1144.99 233.59 1134.80* 1135.23 48.99
100-10-2b 11 1559.88 1645.07 45.62 1566.48 1585.67 195.28 1566.48 1588.24 256.10 1568.71 1583.06 267.51 1559.88 1570.80 190.30 1555.71* 1555.71 58.02
100-10-3 25 1204.94 1216.20 18.76 1209.20 1221.52 277.89 1209.86 1225.98 376.80 1210.61 1225.49 352.77 1204.94 1209.27 151.09 1204.01* 1204.01 56.63
100-10-3b 11 1653.83 1745.05 22.99 1662.43 1705.63 187.74 1665.69 1706.68 243.04 1676.25 1705.51 262.94 1653.83 1670.95 196.73 1647.85* 1649.38 67.45
200-10-1 49 2780.03 2861.85 91.20 2798.57 2854.10 1327.81 2797.86 2863.27 2204.55 2792.24 2860.29 2026.86 2780.03 2788.95 568.99 2770.45* 2774.33 240.31
200-10-1b 22 3290.73 3557.96 99.69 3368.71 3477.07 956.22 3355.70 3478.91 1572.79 3327.76 3456.43 1411.39 3290.73 3336.49 522.54 3270.68* 3292.13 249.43
200-10-2 49 1973.41 1997.01 112.28 1984.96 2001.97 1164.73 1986.55 2004.51 2571.48 1986.51 2003.80 1853.75 1973.41 1980.50 429.89 1963.32* 1964.37 206.21
200-10-2b 23 2328.12 2473.24 89.74 2336.11 2379.01 932.35 2355.15 2378.21 1704.98 2336.29 2377.63 1453.02 2328.12 2360.59 438.38 2309.30* 2314.74 174.98
200-10-3 48 2727.15 2783.20 106.18 2741.16 2758.09 1075.86 2744.67 2757.42 2293.23 2750.18 2762.07 1612.10 2727.15 2736.47 419.99 2719.34* 2720.27 182.54
200-10-3b 22 3194.53 3413.34 92.27 3242.18 3274.58 772.47 3233.89 3267.81 1422.02 3225.11 3272.52 1226.53 3194.53 3220.29 345.12 3174.91* 3186.06 183.21
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Table A.3
Comparative results of proposed RLHEA with the reference algorithms on the set Barreto.

Instances GBILS SA-VND0 SA-VND1 SA-VND2 M-ILS RLHEA

Name Nv BKS fbest Tavg fbest favg Tavg fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg

Christ_50_5 6 1661.64 1719.89 11.99 1661.64 1662.06 46.25 1661.64 1662.13 42.96 1661.64 1662.13 64.7 1661.64 1669.05 51.88 1661.64 1661.64 18.65
Christ_75_10 9 2370.73 2399.28 51.12 2403.79 2459.03 96.45 2383.04 2457.45 122.18 2400.86 2459.58 128.00 2370.73 2417.28 127.97 2362.48* 2362.48 40.98
Christ_100_10 8 3791.98 3984.05 148.17 3791.98 3831.18 177.42 3806.39 3838.89 198.76 3797.00 3826.81 231.22 3803.5 3848.63 168.75 3788.96* 3788.96 92.92
Gaskell_21_5 4 653.48 653.48 0.28 653.48 653.48 9.33 653.48 653.48 8.67 653.48 653.48 13.86 653.48 653.48 11.93 653.48 653.48 4.06
Gaskell_29_5 4 1199.33 1199.33 1.70 1199.33 1199.33 25.33 1199.33 1199.33 21.29 1199.33 1199.33 40.27 1199.33 1199.33 22.26 1199.33 1199.33 7.30
Gaskell_32_5b 3 1552.84 1552.84 1.60 1552.84 1553.29 35.58 1552.84 1553.29 27.65 1552.84 1552.84 55.69 1552.84 1556.58 24.35 1552.84 1552.84 9.00
Gaskell_36_5 4 1627.17 1627.17 1.05 1627.17 1627.17 25.76 1627.17 1627.17 22.72 1627.17 1627.17 39.59 1627.17 1628.12 29.56 1627.17 1627.17 11.26
Min_27_5 4 5387.55 5387.55 27.55 5387.55 5387.55 14.27 5387.55 5387.55 12.25 5387.55 5387.55 22.73 5387.55 5387.55 10.59 5387.55 5387.55 5.98
Min_134_8 11 21751.97 - - 21852.35 22307.28 194.27 21910.54 22309.19 215.35 21853.52 22256.20 276.15 21751.97 22450.39 164.69 21751.97 21751.97 131.91
Or_117_14 7 53798.53 - - 53798.53 54866.72 108.95 53859.08 54805.87 105.50 54103.16 54902.35 171.64 54328.75 56687.87 125.96 53798.53 53907.31 97.84
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